
Classical Hypermedia Virtues on the Web with Webstrates

Niels Olof Bouvin
Department of Computer Science

Aarhus University, Denmark
bouvin@cs.au.dk

Clemens Nylandsted Klokmose
Center for Advanced Visualization & Interaction

Aarhus University, Denmark
clemens@cavi.au.dk

ABSTRACT
We show and analyze herein how Webstrates can augment
the Web from a classical hypermedia perspective. Webstrates
turns the DOM of Web pages into persistent and collaborative
objects. We demonstrate how this can be applied to realize
bidirectional links, shared collaborative annotations, and
in-browser authorship and development.

Categories and Subject Descriptors
H.4.5 [Hypertext/Hypermedia]: Architectures

Keywords
Web; hypermedia; collaboration; dynamic documents

Introduction
The vision of hypermedia was to create a richly intertwingled
world of words, ideas, and concepts; an all-encompassing
collection of documents and works readily available for the
information worker to peruse, structure, correlate, add to,
and amend using powerful tools and abstractions [15, 23, 36].

What we have ended up with is both less and far more.
The modern Web is all-encompassing in scope, and available
to a high and growing percentage of the world’s population.
On the Web, we find incredibly rich collections of human
knowledge, vast social networks connecting billions, commer-
cial as well as public ventures that have upended business as
usual, and communities, small and large, around any topic
you might care to mention. The Web has shaped the way
software is being built, deployed, and used. A modern de-
veloper is faced with a bewilderingly rich range of choices in
technologies, platforms, frameworks, and concepts.

Yet all is not as well as it might be. The Web still does not
offer the level of hypermedia structuring mechanisms once
considered standard for a hypermedia system (e.g., bidirec-
tional links). The original vision of the Web [10] included
the notion of a collaborative inter-creative space where au-
thorship and consumption were equal. While that can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HT ’16, July 10-13, 2016, Halifax, NS, Canada
c© 2016 ACM. ISBN 978-1-4503-4247-6/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2914586.2914622

Figure 1: Webstrates persist and synchronize through opera-
tional transformations any changes to the Document Object
Model of pages, called Webstrates, served from the Web-
strates server to all clients of the same webstrate (from [32]).

found in the form of, e.g., wikis and Web-based productivity
suites such as Google Docs, these are usually either limited
in functionality, or closed proprietary platforms.

Earlier attempts have been made to rectify some of the
shortcomings of the Web, such as augmenting the hypermedia
functionality available [13]. Invariantly, these attempts have
not been successful in gaining widespread use.

The system Webstrates [32] demonstrate how a relatively
simple change to the workings of the Web can provide users
with a collaborative and, crucially, user extensible platform
for the creation, editing, and structuring of documents and
applications, limited only by the modern Web browser.

Webstrates makes the Document Object Model (DOM),
which is the runtime in-memory representation of Web pages,
a persisted and collaborative object. Client-side changes to
the DOM are persisted to the server and synchronized to all
other clients of the same page using operational transform
[22] (Figure 1). Webstrates is presented as a prototype real-
ization of a software vision, shareable dynamic media, that
builds upon Alan Kay’s seminal software vision but where
collaboration among users and distribution across heteroge-
neous devices are emphasized. The authors demonstrate in
[32] from a UI systems perspective how Webstrates can en-
able software malleability and personalization, collaboration
with personalized interfaces, remote user interface extension
at run-time, and orchestration of complex distributed and
collaborative user interactions.

We review herein historical hypermedia, and based on this,
analyze the modern Web, and present examples of how the
extension to the Web brought forth by Webstrates can realize
principles from classical hypermedia on the Web.

207

http://dx.doi.org/10.1145/2914586.2914622
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2914586.2914622&domain=pdf&date_stamp=2016-07-10

Classical Hypermedia Systems
Hypermedia as a discipline is quite old. We describe in this
section select aspects of the systems that predate the Web,
which has become largely lost, and some of which we would
like to see reintroduced into common usage.

The original vision for hypermedia [15] had the knowledge
worker working alone, reading, annotating, and linking docu-
ments, and occasionally sharing documents and trails with
others, or purchasing trails pre-authored by trail blazers. As
hypermedia moved from theoretical construct to actuality,
Engelbart and his lab [24] led the way in demonstrating
NLS/Augment, that, among many other groundbreaking
achievements, featured collaborative authoring and linking
of structured documents across multiple remote computers.

Much later, systems such as Intermedia [34] would demon-
strate the possiblities of a collaborative hypermedia system
that supported a rich set of media types and associated edi-
tors, as well as disjunct “webs” of hypermedia structures over
a corpus of documents. Separating documents and hyperme-
dia structures became a cornerstone of the Dexter model [30],
and the foundations of open hypermedia, inspired in part by
the observation of Meyrowitz [35] that lack of widespread
hypermedia adoption could be attributed to the closed na-
ture of the systems—all required their own environments and
editors, rather than those applications commonly used. The
open hypermedia community addressed this through a class
of hypermedia systems [9, 18, 25, 27] that could almost seam-
lessly integrate with existing tools, and by doing so, allowed
their users to link documents across third-party applications.

While the various open hypermedia initiatives showed that
hypermedia integration was viable, the approach was both
labour-intensive (making third-party applications work with
a hypermedia service is hard) and fragile (a new version of an
applications could break functionality; links, etc., required
the hypermedia service to be present). One way to ensure
robustness is to have control over editors as well as hyperme-
dia functionality, and while this, by definition, has been the
case for all monolithic hypermedia systems, one of the more
remarkable was NoteCards [31]. NoteCards is a significant
hypermedia system, not least because it was built in the, for
the time highly advanced, InterLisp software development
environment, which enabled its developers at Xerox PARC
to easily extend it. Thus, NoteCards became a testbed for
many different structuring mechanisms, such as graphical
structure browsers, guided tours, and tabletops [40]. Having
a fertile and highly interactive development platform, where
developers and researchers could easily extend functionality,
made this possible. A contemporaneous system was Hyper-
Card [26], and if NoteCards represents one of the cutting
edge research systems of its day, then HyperCard was the
everyman hypermedia authoring tool available to all owners
of Mac computers. While neither its hypermedia functional-
ity nor its flexibility was as rich as NoteCards, it provided
its users with an easily accessible development model, which
made the creation of a plethora of HyperCard stacks possible.
HyperCard demonstrated that if tools are available and easily
used, then users can and will become creators and developers,
not only of hypertexts, but of interactive programs.

The Web as Hypermedia
Whether the Web qualifies as a hypermedia system may
once have been a matter of debate [38], but it is today the

dominant paradigm for information exchange. While Berners-
Lee’s original graphical browser [10], was a browser and an
editor both, the dominant paradigm became the Mosaic
browser and all its heirs, which focused solely on browsing.
Rather than a vision of global editability [20], it became
mainly a vehicle for consumption. Web authoring became
largely the domain of specialists. If readers were permitted
to contribute, it was in closely delineated spaces, filling and
submitting forms. With enough freedom and community
dedication, very rich sites, e.g., Wikipedia, could be built.

The modern Web browser remains largely a tool for brows-
ing, but it has gained notable functionality over the years,
e.g., access to developer tools for inspection, debugging, and
manipulation of Web pages. Even so, most Web development
still takes place outside the browser, working with editors
and servers. As shall be seen below, we believe that this need
no longer be the case, and by focusing on developing for the
browser in the browser (and by the people), it is possible to
once again shift the way we have come to use computers.

The original hypertext pioneers had bold visions of what
hypertext might entail in collecting and correlating all human
knowledge, and in doing so augmenting the human mind.
What they, and perhaps none, could have foreseen were the
uses a system as flexible and global as the Web could be put
to. Today, the Web has gone beyond “simply” hypermedia
to encompass not only most of human knowledge, but also a
large part of humanity’s economic transactions, and a not
inconsiderable part of its social and political life. Its very
ubiquity, across all modern mobile and desktop platforms,
makes it an ideal platform to build new types of software.

The Web supports basic inline unidirectional linking be-
tween documents, where earlier hypermedia systems often
supported far richer structures, such as external bidirectional
n-ary links, first-class composites, external annotations, or
hierarchical structures, sometimes even collaboratively cre-
ated. The lacklustre hypermedia functionality of the Web
prompted the development of a special class of Web augment-
ing hypermedia systems [12, 14, 16, 17, 21, 29], where users
could add links and other external structures to existing Web
pages. Sharing the weaknesses of other open hypermedia
systems, none of these systems gained any widespread use.
The Web community, too, attempted generating meta-layers
of meaning through XLink [17, 19] and the many initiatives
collectively known as the Semantic Web [11, 33]. Both relied
on either browser functionality that never materialised, or
communities of use that, outside of specialist fields, never
grew to a sizeable part of the Web.

However, with the advent of the modern Web browser,
there is no longer any need for either integration with out-
side applications (as with open hypermedia) or waiting for
the general adoption of new Web standards (as with the
Semantic Web). Everything needed to create a high func-
tioning hypermedia system is present in the average desktop
or mobile device.

The Dexter model [30] formally recognized hypermedia
structures as first class objects, and not just attributes of
selections. By separating documents, anchors, and the struc-
tures referencing the anchors, one can create an extensible
and collaborative environment for editing, sharing, anno-
tating, and structuring media in its many forms. As we
demonstrate below, the modern Web browser has the infras-
tructure to handle all this, enabling a far richer hypermedia
experience than the conventional Web support.

208

Figure 2: A figure webstrate is transcluded using the iframe

node in both a paper webstrate and a slideshow webstrate
(reprinted from [32] with permission).

Webstrates
Webstrates is a DOM-centric Web architecture that makes
the DOM of any page, called a webstrate, served from the
Webstrates server a collaborative and persistent object. Any
changes to the DOM of a webstrate are persisted on the
server and synchronized to all other clients of the same
webstrate, including changes to any inlined JavaScript or CSS.
Consistency between clients is ensured through operational
transformations [22]. Webstrates does not introduce a new
framework or API, but instead relies on the standardized
API of and interaction with the DOM, but with with a new
set of rules of engagement.

Klokmose et al. [32] demonstrate a number of uses for Web-
strates focusing on enabling software malleability and per-
sonalization, collaboration through personalized interfaces,
remote user interface extension at run-time, and orchestration
of complex distributed and collaborative user interactions.
These examples leverage transclusions [37] of one webstrate
in another. The Web supports transclusion through the
iframe tag, where one Web page can be embedded in an-
other by reference. When transcluder and transcludee are
served from the same domain, the JavaScript runtime of the
two pages can interact. Thus, JavaScript from the outer page
can manipulate the DOM of the inner and vice versa.

Transclusion can allow a document webstrate to be tran-
scluded into an application-like webstrate that provides tools
for editing the document. This mechanism can allow two
or more users in real-time to collaborate on authoring a
paper through personal text-editors that are functionally as
well as visually different, and the authors can, at run-time,
share tools and extend their respective user interfaces. A
text-editor webstrate can be transcluded into a developer
webstrate and thereby allow live modification of a running
user interface (of another user). Transclusion in Webstrates
is illustrated in Figure 2 where a figure webstrate is both
transcluded in a paper webstrate and a slideshow webstrate.
Changes to the figure webstrate will be reflected in both the
paper and slideshow.

Development and authoring in webstrates happen inside
the browser; either directly through the developer tools of
the browser, or through webstrates built for development as,
e.g., the code editor mentioned above. Thus, the distinction
between development and use or browsing and authorship
becomes a phenomenon of use.

Reference implementation
The reference implementation of Webstrates [8] consists of
a NodeJS [3] server and a transparent JavaScript client.
Synchronization and consistent concurrent editing of the
DOM are implemented using operational transformations [22]
through the ShareJS [6] library, and webstrates are persisted
in a MongoDB [2] database as JsonML [1] documents. When
a Web page is loaded from the Webstrates server, the Web-
strates JavaScript client is statically served to the client
browser. The client asynchronously loads the data of the
given webstrate in JsonML from the server based on the
resource name in the URL, and populates the DOM of the
page. The client observes local changes to the DOM us-
ing the MutationObserver DOM API [7] and subscribes to
changes from other clients of the same page through a web
socket connection to the server (see Figure 1). Observed
mutations to the DOM are translated to JSON operations
on the JsonML representation of the DOM. These operations
consist of an absolute path into the JSON document, an
action (e.g., insertion in a list or deletion in a string) and a
value (e.g., the element to be inserted or the substring to be
deleted). As the browser guarantees that the DOM can be
serialized to well-formed HTML, our JsonML representation
will always be well-formed as well.

The reference implementation includes a basic authentica-
tion mechanism using external providers (e.g., GitHub), and
webstrates can be annotated with access rights (read-write,
read, no access) as an attribute on the root HTML node of
the DOM. A new webstrate is created by requesting a new
resource name. Due to the reliance of transclusion through
iframes, the current implementation of Webstrates is central-
ized, as modern browsers restrict crossing iframe boundaries
when pages are served from different domains. This is some-
thing that can be overcome technically, but which also opens
up for a number of security challenges.

The reference implementation provides a simple HTTP
API for creating new webstrates using other (versions) of
webstrates as prototypes. Duplicating a webstrate can also be
achieved by copying the HTML serialized DOM of a webstrate
into another using the developer tools of the browser, as all
state and behavior are stored in the DOM.

Demonstrators
We present below two demonstrators that illustrate how
rich hypermedia functionality can be realized in Webstrates.
Both demonstrators are simple yet usable pieces of software
that each required little more than a work day to implement.
While there are many other kinds of hypermedia structures
that we could have chosen as our test cases (e.g., guided
tours [40] or fluid annotations [41]), linking and annotating
form the basis on which many other mechanisms can be built.

Web article archive with bidirectional links
The first demonstrator is a Web article archive, where a user
can collect articles, take notes, and create bidirectional links
between the articles and the notes. Figure 3 shows a user
researching interviews with Ted Nelson.

The Web archive consists of three types of webstrates:
an archive webstrate (the top level webstrate), a set of
article webstrates, and a webstrate for storing an exter-
nal bidirectional link collection. The user can paste in a
URL to a Web page (Figure 3b top), upon which it will

209

Figure 3: A simple Web article archive implemented with Webstrates, and with bidirectional links between notes and articles.
a) Toolbar for creating links and highlighting text. b) Archive of Web articles. New articles are added using the form in the
top. c) Notes. d) Article view. e) Collection of bidirectional links stored in a transcluded webstrate. f) The two anchors of a
bidirectional link and the link in the external link structure.

Figure 4: A PDF being annotated by two users, one on an
iPad. Their individual annotation layers can be toggled using
the controls in the top left corner.

be processed into clean easily readable HTML (using the
Readability [5] API) and stored in a new webstrate. A
link to the article webstrate is added to the DOM of the
archive webstrate (Figure 3b). Clicking on an article link
will translude it in an iframe in the archive webstrate (Fig-
ure 3d). The notes (Figure 3c) are a div element in the
archive webstrate that is editable through the contentEd-

itable attribute. To create a link, the user makes a selection
in the notes, presses the “select source for link” button (Fig-
ure 3a), makes a selection in an article, and presses the
same button now labelled “select target for link”. An anchor
element with a unique ID is added to both the notes and
the article (of the form text), and a
bidirectional link node is added to an external link webstrate
that is trancluded in an iframe (Figure 3e-f). The bidirec-
tional link has the form <bilink anchor1=’url:anchorId’

anchor2=’url:anchorId’>text</bilink>. An anchor in
the notes or articles is only visualized as links (red and
underlined) if the anchor is part of a bidirectional link in
the link collection. Clicking a link in the notes will open
the linked article and highlight the anchor. Clicking a link
in an article will scroll the notes to the given anchor and
highlight it. Clicking a link in the list of bidirectional links
will highlight the link in both notes and article.

This demonstrator shows that it is straightforward to
implement bidirectional links with an external link structure
on top of the Webstrates platform. We leverage that changes
to the DOM are persisted, so storing a link, the HTML for
an article, or a note is just a matter of manipulating the
DOM, and does not require any explicit interaction with,
or development of, a backend server. Here, we use inlined
anchors. This works well for a single user application, but if
articles and notes were shared between users, each applying
their own external link structures, documents could become
polluted with anchors, leading to conflicts with overlapping

210

anchors (forbidden in HTML), and requiring the users to
have write permission to the linked webstrates. Alternatively,
external, computable location specifications [28] could be
used. This could be implemented by storing a DOM query
expressed as a JavaScript function in the bidirectional link
instead of an explicit anchor reference, not unlike [39]. A
third more robust option would be to extend Webstrates
with unique DOM node IDs, and link directly to nodes or
sets of nodes.

This demonstrator is designed for a single user, but could
easily be extended to support external link collections shared
between users similar to how it is done with annotations in the
next demonstrator. The implementation of this demonstrator
contains ∼240 lines of JavaScript (excluding libraries).

Shared PDF annotations
The second demonstrator is a collaborative PDF annota-
tion tool. Figure 4 features the first page of [30] displaying
annotations of two users, C (blue) and B (red). This demon-
strator consists of three types of webstrates: a PDF data
webstrate, two PDF viewer webstrates, and two annotation
webstrates. The data webstrate contains the raw data of a
PDF as a base64 encoded string directly in the DOM. The
PDF viewer webstrates transclude the data webstrate and
render the PDF on a canvas element using PDF.js [4]. The
viewer webstrate is personal and identifies the given user and
stores their preferences (e.g., annotation color). The PDF is
annotated using a pen (here an Apple Pencil on an iPad Pro)
or a mouse. Annotations are stored in separate webstrates
transcluded into the viewer and rendered on top of the PDF.
Thus, annotations can be shared between users. Figure 4
shows user C’s PDF viewer, where user B’s annotations has
been transcluded in as well and can be toggled on and off
using the top left controls. The PDF viewer observes changes
to annotations (using the MutationObserver DOM API), so
user C will see any new annotations B may make in real-time.
Changing page is done by updating a page number attribute
in the DOM of the view. This is done through JavaScript
using the keyboard on a desktop computer and with ges-
tures on a tablet. Thus, page browsing will be synchronized
between all devices with the same viewer open.

This demonstrator shows how external annotation layers
can be created using Webstrates and transclusion, and how
Webstrates can facilitate collaboration. It also shows how non
Web-native media like a PDF can be integrated using modern
Web standards. The implementation of this demonstrator
contains ∼400 lines of JavaScript code (excluding libraries).

Discussion
We believe Webstrates has the potential to be a vehicle to
bring the roots of hypermedia (back) into the Web. With
the two demonstrators above we show how external link
structures (in the vein of the Dexter Reference Model) and
annotation layers can be realized as hypermedia documents
themselves; documents that can be shared and collabora-
tively edited. Webstrates breaks with the tradition of Web
development happening offline on static files. Webstrates is
document centric and makes the DOM a first class citizen
of a hypermedia system, just as earlier hypermedia systems
elevated the link and the anchor. This is in contrast to
the current trend in Web frameworks where the DOM is
used primarily as an ephemeral view in a traditional Model-

View-Controller application architecture. Development of
Webstrates currently requires experience in Web development
and a certain proficiency in using the developer tools of the
browser, but we can easily imagine webstrates developed for
end-user authorship akin to HyperCard and beyond. Web-
strates is yet an immature platform, but it has demonstrated
significant potential; not necessarily to support the Web as
a heavy-weight application platform to create software for
millions, but instead as a platform for user expression and
personal media. Limitations and challenges of implementing
Webstrates include (but are not limited to) dealing with
large amounts of data exceeding what can be stored in the
DOM (and held in memory of the browser), overcoming
the restrictions of transclusion using iframes while at the
same time keeping user data safe, some performance and
synchronization issues (as raised in [32]), and providing a
distribution platform for users to share and collaborate on
webstrates.

Conclusion
The Web grew to its current popularity partly because of
its simplicity, but lost in the process much that had been
commonplace for hypermedia systems. Now the Web and
its tools have evolved to a stage, where the common browser
can become the platform for changing the way we work with
information, alone or together. We have demonstrated that
principles of classical hypermedia systems can be reinvigo-
rated on the Web by rethinking the serving foundation of the
Web, and in doing so we have made these principles available
across both desktop and mobile devices.

We invite the interested to experiment with the reference
implementation of Webstrates [8], and to explore the pos-
sibilities of what can be achieved once you realize that a
synchronised DOM forms a strong foundation for collabora-
tive hypermedia on the Web.

Acknowledgement
This work was funded by ParticipatoryIT, AU, Denmark.

References
[1] JsonML. http://jsonml.org/.

[2] MongoDB. http://mongodb.org/.

[3] Node.js. http://nodejs.org/.

[4] PDF.js. http://mozilla.github.io/pdf.js/.

[5] Readability. https://readability.com.

[6] ShareJS. http://github.com/share/ShareJS/.

[7] W3C DOM4. http://www.w3.org/TR/domcore/.

[8] Webstrates. http://github.com/cklokmose/Webstrates.

[9] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr.
Chimera: Hypertext for heterogeneous software
environments. In Proc. 1994 Euro. Hypertext Conf.,
pages 97–107. ACM, Sept. 1994.

[10] T. Berners-Lee, R. Cailliau, J.-F. Groff, and
B. Pollerman. World-Wide Web: The information
universe. Electronic Networking: Research,
Applications and Policy, 1(2), 1992.

211

http://jsonml.org/
http://mongodb.org/
http://nodejs.org/
http://mozilla.github.io/pdf.js/
https://readability.com
http://github.com/share/ShareJS/
http://www.w3.org/TR/domcore/
http://github.com/cklokmose/Webstrates

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 284(5):28+, 2001.

[12] N. O. Bouvin. Unifying strategies for Web
augmentation. In Proc. 10th Hypertext Conf., pages
91–100, Darmstadt, Germany, Feb. 1999. ACM Press.

[13] N. O. Bouvin. Augmenting the Web through open
hypermedia. The New Review of Hypermedia and
Multimedia, 8:3–26, 2002.

[14] N. O. Bouvin, P. T. Zellweger, K. Grønbæk, and J. D.
Mackinlay. Fluid annotations through open
hypermedia: Using and extending emerging Web
standards. In Proc. WWW2002 Conf., pages 160–171,
Honolulu, USA, May 2002. W3C. .

[15] V. Bush. As we may think. The Atlantic Monthly, 176
(1):101–108, July 1945.

[16] L. A. Carr, W. Hall, and S. Hitchcock. Link services or
link agents? In Proc. 9th Hypertext Conf., pages
113–122, Pittsburgh, PA, USA, June 1998. ACM Press.

[17] B. G. Christensen, F. A. Hansen, and N. O. Bouvin.
Xspect: bridging open hypermedia and XLink. In
Proceedings of the 12th International World Wide Web
Conference, pages 490–499, Budapest, Hungary, May
2003. W3C, ACM Press. .

[18] H. C. Davis, D. E. Millard, S. Reich, N. O. Bouvin,
K. Grønbæk, K. M. Anderson, U. K. Wiil, P. J.
Nürnberg, and L. Sloth. Interoperability between
hypermedia systems: The standardisation work of the
OHSWG. In Proc. 10th Hypertext Conf., pages
201–202, Darmstadt, Germany, Feb. 1999. ACM Press.

[19] S. DeRose, E. Maler, D. Orchard, and B. Trafford
(editors). XML Linking Language (XLink). W3C
Recommendation 27 June 2001, W3C, June 2001.
http://www.w3.org/TR/xlink/.

[20] A. Di Iorio and F. Vitali. From the writable web to
global editability. In Proc. 16th Hypertext Conf., pages
35–45, New York, NY, USA, 2005. ACM.

[21] O. Dı́az, C. Arellano, and M. Azanza. A language for
end-user web augmentation: Caring for producers and
consumers alike. ACM Trans. Web, 7(2):9:1–9:51, May
2013.

[22] C. A. Ellis and S. J. Gibbs. Concurrency control in
groupware systems. In ACM Sigmod Record, volume 18,
pages 399–407. ACM, 1989.

[23] D. Engelbart. A conceptual framework for the
augmentation of man’s intellect. In P. Howerton, editor,
Vistas in Information Handling, volume 1, pages 1–29.
Spartan Books, Washington DC, USA, 1963.

[24] D. C. Engelbart and W. K. English. A research center
for augmenting human intellect. In Proceedings of the
December 9-11, 1968, Fall Joint Computer Conference,
Part I, AFIPS ’68 (Fall, part I), pages 395–410, New
York, NY, USA, 1968. ACM.

[25] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis.
Microcosm: An open model for hypermedia with
dynamic linking. In Proc. Euro. Hypertext Conf., 1990.

[26] D. Goodman. Complete HyperCard 2.0 Handbook.
Random House Inc., 1990.

[27] K. Grønbæk and R. H. Trigg. Design issues for a
Dexter based hypermedia system. CACM, 37(2):40–49,
Feb. 1994.

[28] K. Grønbæk and R. H. Trigg. Toward a Dexter based
model for open hypermedia: Unifying embedded
references and link objects. In Proc. 7th Hypertext
Conf., pages 149–160, Bethesda, MD, USA, Mar. 1996.

[29] K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing
Dexter based hypermedia services for the World Wide
Web. In Proc. 8th Hypertext Conf., pages 146–156,
Southampton, UK, Apr. 1997. ACM Press.

[30] F. G. Halasz and M. D. Schwartz. The Dexter
hypertext reference model. CACM, 37(2):30–39, Feb.
1994.

[31] F. G. Halasz, T. P. Moran, and R. H. Trigg. NoteCards
in a nutshell. In Proceedings of ACM Conference on
Human Factors in Computing Systems and Graphics
Interface, pages 45–52, Toronto, Canada, Apr. 1987.

[32] C. N. Klokmose, J. R. Eagan, S. Baader, W. Mackay,
and M. Beaudouin-Lafon. Webstrates: Shareable
dynamic media. In Proc. UIST 2015, pages 280–290,
New York, NY, USA, 2015. ACM. .

[33] C. C. Marshall and F. M. Shipman. Which semantic
web? In Proc. 14th Hypertext Conf., pages 57–66,
Nottingham, UK, Aug. 2003. ACM Press. .

[34] N. K. Meyrowitz. Intermedia: The architecture and
construction of an object-oriented hypermedia system
and applications framework. In OOPSLA 1986 Proc.,
1986.

[35] N. K. Meyrowitz. The missing link: Why we’re all
doing hypertext wrong. In E. Barrett, editor, The
Society of Text: Hypertext, Hypermedia and the Social
Construction of Information, pages 107–114. MIT
Press, Cambridge, USA, 1989.

[36] T. H. Nelson. Computer Lib/Dream Machines. Mindful
Press, 1974.

[37] T. H. Nelson. The heart of connection: hypermedia
unified by transclusion. CACM, 38(8):31–34, 1995.

[38] P. J. Nürnberg and H. Ashman. What was the
question? reconciling open hypermedia and world wide
web research. In Proc. 10th Hypertext Conf., pages
83–90, Darmstadt, Germany, Feb. 1999. ACM Press.

[39] T. A. Phelps and R. Wilensky. Robust intra-document
locations. In Proc. WWW2000 Conf., pages 105–118,
Amsterdam, Holland, May 2000. W3C.

[40] R. H. Trigg. Guided tours and tabletops: tools for
communicating in a hypertext environment. In Proc.
CSCW 1998 Conf., pages 216–226, 1988. .

[41] P. T. Zellweger, N. O. Bouvin, H. Jehøj, and J. D.
Mackinlay. Fluid annotations in an open world. In
Proc. 12th Hypertext Conf., pages 9–18, Århus,
Denmark, Aug. 2001.

212

http://www.w3.org/TR/xlink/

